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The statistical properties of the quantum chaotic spectra have been studied, so far, only up to the second
order correlation effects. Numerical as well as analytical evidence that the random matrix theory can success-
fully model the spectral fluctuatations of these systems is available only up to this order. For a complete
understanding of spectral properties it is highly desirable to study the higher order spectral correlations. This
will also inform us about the limitations of random matrix theory in modeling the properties of quantum
chaotic systems. Our main purpose in this paper is to carry out this study by a semiclassical calculation for the
qguantum maps; however, results are also valid for time-independent sy§&063-651X97)15402-2

PACS numbgs): 05.45:+hb, 03.65.Sq, 05.48;j

I. INTRODUCTION by using the principle of uniformity6], which is based on
the uniform distribution of periodic orbits at large time
In generic Hamiltonian systems with many degrees ofscales, and gives atechniqug to evalgate the sum of periodic
freedom, the classical dynamics shows an enormous richne§&bit_contributions. Using this technique for autonomous
in structure, increasing with the interaction between degreelamiltonians, Berry 7] provided an explicit expression for
of freedom. The classical motion is mainly of two types, the semiclassical form factdt,(7)—the Fourier transform
integrable and chaotic; sé&] for details. This paper deals ©f the two-level spectral correlation function—for values of
with the quantum properties of Hamiltonians whose classicaf in the ranger<1 (the time measured in units ofz.d,
limit is chaotic. whered is the mean spectral densityThis result has an
The strongly chaotic nature of underlying classical dy-exact analogy with the corresponding RMT behavior; fol-
namics suggests that we intuitively expect some kind of ranlowing essentially the same technique as used by Berry for
dom behavior in quantum dynamics as well. This is becausautonomous Hamiltonians, this analogy can also be proved
the classical dynamics is indeed a limit€0) of quantum  for quantum map$2]. In the regionr>1 also, the limiting
dynamics, and therefore the nature of former should béehavior was analyzed by Berry using a semiclassical sum
somehow reflected in the latter. In fact, various analyticalrule which makes use of the properties of the function related
and numerical studietsee[2] and references thergithave  to the quantum-mechanical density of states.
confirmed that the manifestation of chaotic behavior in quan- Notwithstanding the good agreement between RMT and
tum dynamics occurs through randomizatigartial or ful)  statistical quantum chaos up to second order correlations
of matrices of associated quantum operators. The spectrdbng and very lony still there is no reason to believe that
and strength fluctuations of these operators can be well modhe random matrix theoryRMT) can model allnth order
eled (up to second order correlationsy one of the various spectral as well as strength correlations. The numerical stud-
universality classes of random matrices. Most commories for many systemée.g, Baker mag8], quantum kicked
among these are the Gaussian orthogonal ense(@¥) rotor[2], etc) have already indicated that even second order
and the Gaussian unitary ensemf@®UE) and the circular correlation effects, when considered on short time scales
orthogonal ensemble and the circular unitary enseri®dle (i.e., very long range correlationsio not follow the random
The former pertain to autonomous systems whereas the lattefatrix prediction and are nonuniversal. This is the range
have application in the study of nonautonomous systemghere the classical dynamics is still diffusive, and periodic
such as quantum maps. orbits are not yet uniformly distributed. The deviation from
The presence of random matrix thedRMT)-type spec- RMT in this range agrees well with our intution, as one
tra in quantum chaotic systems can be explained by thghould expect RMT to be applicable only on those time
Gutzwiller-semiclassical quantization schefdg for time-  scales where the variables associated with classical dynamics
independent systems which uses the elegant technique afe random enough to fully randomize the matrices associ-
path integral sum given by Feynman, and relates the chaotigted with corresponding quantum operators. Moreover, the
manifolds of classical dynamics to the eigenfunctions ofsum rules for the matrix elements of quantum chaotic opera-
guantum dynamics. A similar formulation is also given for tors [9] have already been found, differing from those of
time-evolution operators of quantum madg. The spectral RMT. But a study of higher order correlations between zeros
fluctuation measures can then be determined approximatebf Reimann{ function shows a good agreement with RMT
[10,11].
Thus it is relevant to know what properties and up to what
*Present address: Department of Physics, Condensed Matterder the behavior of quantum operators can be modeled by
Theory Unit, Indian Institute of Sciences, Banglore-560012, India.RMT, and when it ultimately breaks down. Our attempt, in
Electronic address: Shukla@physics.iisc.ernet.in this paper, is to make a comparative study of one such prop-
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erty, namely, thenth order spectral correlation, as all function for eigenvalues of the equilibrium circular en-
n-level spectral fluctuation measures can be expressed in isembles of the random matrix theory.

terms. We fufill this goal by carrying out a semiclassical

study of the Fourier transform of the-level correlation 1. Circular ensembles

functionR,; the reason to consider the Fourier tranform lies  The circular-type equilibrium ensembles are ensembles of
in the covenience of its analytical as well as numerical Ca'unitary matricesU 5 in which the distinct nonzero matrix
culability. We proceed as follows. _ elements ol are distributed independently as zero-centered
The Gutzwiller formulation gives us the density of stateSyangom variablesg defines the number of independent com-
as a sum over per|od|9 orbits, and Fh|s gives rise to p_erlod'?)onents of the matrix elements bf. There are three such
orbit interaction terms im-level density correlation function. ansembles. characterized Bynamely COE, CUE, and CSE
Berry, in order to obtain result for a two-level form factor, o, B=1, 2, and 4, respectively. These universality classes
neglected the contribution from these interacting terms as gre determined by the invariance of the system under time-
first order approximatiorithe so-called diagonal approxima- reyersal(TR) transformation(or more generally antiunitary
tion). However, for a complete evaluation of the form factor, yransformatiop and are described by the invariance of the
one has to calculate the contribution due to interacting termssnsemble measure: invariance under orthogonal or symplec-
The lack of the knowledge of action correlations handicapsjc transformations for TR-invariant systems and under uni-
us from doing so. One attempt in this direction was made ifary transformations for TR-noninvariant ones. The invari-
Ref. [12], in which, by assuming the complete validity of 5nce restricts the allowed space of matrices, for example, to

random matrix theory, the periodic orbit correlations wereat of symmetric unitary matrices for orthogonal invariance.
calculated from the RMT form factor. These, when com-

pared with numerically obtained correlatiofisr Baker map,
hyperbola billiard, and perturbed Schinger cat map
showed a good agreement. The numerical study of these ac- The aforementioned unitarity dJ implies that its eigen-
tions also indicated the presence of an uncorrelated compgalues exgg;) lie on the unit circle in the complex plane,
nent(exponentially larger than correlated paih this paper ~where exponentg;’s are termed as eigenangles. The density
we use this fact. We assume that, on long time scales asd states is then defined by

first order approximation, actions are uncorrelated, and we

2. n-point correlators

calculate thenth order form factor. Under this approxima- N o
tion, the result turns out to be same as that of RMT, which is

’ . i ) ! E)= O(E—27k—E; 2.1
also confirmed from the numerical analysis for at least two p(E) 121 k;oc ( T 2 @

higher order fluctuation measures given in this paper. For a
complete calculation of theth order form factor, the action
correlations which will determine the higher order terms _ n
should also be taken into account. =52, SXRINE)Tr(UY) (2.2)
In this paper, we present our semiclassical study for quan-
tum maps, but the method can easily be generalized for time-
independent systems, and one obtains the same results. Sirahd has the mean valde) = N/27.
larly the RMT is given only for circular ensembléSE) but, For analytical studies of the spectrum, it is the usual prac-
once again, the final results are also valid for Gaussian erfice to calculate the level density correlations. For cases
semblesGE), which follows due to GE-CE equivalence for where the level density(E) can be written as the sum of a
large dimensions smooth par{p(E)) and a fluctuating compone#p(E), it is
This paper is organized as follows: In Sec. Il A, we preferable to study the correlatioR between the fluctuat-
briefly review the definition of various random matrix en- ing parts of the density. ThB,’s can be defined as follows:
sembles. For later use, we also discuss the relation between
the n-level form factor and correlation functions. Section
Il B deals with a brief review of the fundamentals of quan- R(Ey, ... Ek):<5p(E1) op(Ez)- - 5P(Ek)>_ 2.3
tum maps and the earlier obtained results for the two-level Y (p(E1))- - (p(EW)
form factor. Both the Secs. Il A and Il B are included in this
paper so as to clarify the idea_s used in Sec. lll, which dealﬁere p(E)=p(E)—(p(E)), where E;=E+I,D for
with the higher ord_eL correlations and form factors for thej =1.2,... k-1 andE,=E, with D as the mean spacing
e e e Ve M) imlying the aeraging over varb for ranges
namely yskewn)(less and gxcess for a prototype quantum c:ht:(_)ntaining sufficient number of mean spacings. By subtract-
. ' S : %g (p(E)) from Eq. (2.1) and using notation TH")=t,,,
otic system(that is, kicked rotor, and compare them with s . )
: . p(E) can further be written as follows:
those of RMT. We summarize our results in Sec. V.

o

oo

> t.explinE). (2.4)
,#0

n=-—o=

Il. PRELIMINARIES 1
op(E)=5—
A. Random matrix results ™

Here we briefly outline the results for timth order form
factor (i.e, Fourier transform of-point density correlation The substitution of Eq(2.4) into Eq. (2.3 gives
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1 tion of E;’s, the eigenangles; see R¢L3] for details. But
R«(Eq, ..., Ek)zﬁkg (b, ) note thatt, andt_, are not independent of each other, and
one can show thdi3,13]

k
><<ex+< > jm) ED (|tal*)=pn/N, n<N, (2.1D
m=1 £

where B8 is 1 or 2 depending on whether the ensemble is
) k1 ) COE or CUE, respectively. Therefore, in general,
xexpib mzzl Jmlm| |- (2.9 (II{_;t;)=0, if at least ong; is such that its opposite.|; is
not present in the product. This product exists only if the
Here X; implies the summation over all indices following condition is satisfied:

J1+J2s - - -4k, With each index varying from-oo to o ex-
cept zero(that is, none of the indices take value zerbhe _ o\ 2
averaging oveE reduces Eq(2.5) in the following form: H )= H It _H (It[%- (212
k
1
_ y ) ; Now, as can be seen from E@.10, for k odd, every prod-
R(Eq1, ... E)= tit. .-t ) L ;
k(s o NREJ: (gt 1 (mz=l Jm) uct appearing in the sum contains an odd numbey'sfand
k-1 therefore the above condition can never be satisfied. This
Xexp{iD( 2 im'm” 2.6 gives, fork odd,
m=1
Kiodd 71,725 -+ T-1)=0, |7ili=1,. . x<1.
(2.13

1o
W; <tJ'1tl'2' ’ 't*(zl:.n;lljm)>

xex;{iD(r:i_ll jmlm)

HereX’ implies 2 ; subjected to the condition thélkm=11jm
#0. In the semiclassical analysis, instead of dealing directly =a >, [ &( o, 7p,) O(Tp F 1) 87y, T )]
with Ry, it is easier to calculate thkth order form factor, P
defined as follows:

On the other hand, the application of conditi@l10 gives
the following result fork even:

. (2.7

Ki-eved 715725 + - 1Tk—1)

><|7'p1||7'p3||7'p5|' : '|Tpk,l|! (2.19
k-1
Ki(7, ... ,Tk—1)=f exp 2i 2 (Ej—EQ)7| wherea=1 for CUE and 2 for COE. Th&p implies the
] i=1 sum over all possible permutations of indices
XR(Ey, ... EQAE;- - -dE,_ 28 P1:P2, -+ Pr-1 over the set 1,2,.. k—1. _
(B ) dEy 1 (28 The result given by Eq€2.13 and (2.14 are valid only
[ k1 when each|r|<1. For cases with|7|=1 or >1 (i.e.,
=f exp 2 i E I 7; n=N), one has to take into account the correlation between
L =1 traces. Furthermore, though the method adopted here for the
XRe(l1, .. Jypdly---dl_,. (2.9  derivation of theK, result is applicable only for ensembles
o _ _ . of unitary matrices, the final results are also valid for Gauss-
Substitution of Eq(2.5) into Eq.(2.7) givesK, in terms of  jan ensembles. This follows due to the equivalence of fluc-
the traces, tuation measures of the circular and Gaussian ensemble in
k-1 the large dimensionality limit.

1o
Kk:ﬁkg <tjltj2- . -t_(zﬁ]—:lljm>>n]1;[1 5

im
N
(2.10 _ . . .

A classical map can be described by a canonical mapping
As in this study we confine ourselves to a calculation ofm of the coordinate variablg and momenta variable at a

Ky only for | 7| <1,m=1,2,. .. (k—1), for these values of giscrete time step, to those at,. ;:
| 7ml’s only those terms X ; contribute which have indices

TmTt

B. Quantum map vs classical map

{i1+i2+ - - - ,jx} much less thaN. Therefore X} in Eq. (2.5 On+1 On

can be replaced by, in which the indices vary from some Priy =M p.)’ (2.15

value —n to n, wheren<N with all other conditions the

same. with W(q,41,9,) as the generator of the map such that
The above result foK, can further be simplified by using

the recently obtained result for the statistics of the traces IW(dn+1,9n) IW(dn+1.9n)

[13], which indicates that the first few tracest,, . . . ,t, of Pn=" g, pn+1:T

large unitary matricesN large taken from any of the circu- (2.16

lar ensembles display no noticeble correlation. The ensemble
average of each of the traces vanisktbst is,(t,)=0) for ~ The nature of the time step considered can give rise to dif-
all the circular ensembles, due to uniformity of the distribu-ferent kind of maps[1]. For example, for time-periodic
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Hamiltonians, it is easier to study the dynamics in terms ofapproximated af\;=n;exp(— a;)=n;exp(— yn;), with y as
fixed time steps(i.e., the period of the Hamiltonianthe  the entropy of the classical motiow; is the action for one
related mapping known as stroboscopic mapping. For timetraversal of the orbit,m; is the number of traversals,
independent systems it is sometimes sufficient to conside}ﬁ:n/mj is the period of the orbit with a single forward
only those steps of dynamics which occur on a definiteraversal, and; is the Maslov index. The indeg refers to
plane; that is, intersections of a trajectory with a pldime  the number of symmetric analogs, existing in phase space,
stead of equal time stepsnown as Poincare mapping. for the periodic orbit. While considering the long-range cor-
The quantization of a two-dimensional classical maprelations which are mainly affected by the long periodic or-
when the phase space upon which it acts is compact, leads ffxs, it is sufficient to considefm;|=1 (and therefore
the construction of unitary matrica$ of a finite dimension n;=n); this follows due to the principle of uniformity which
N, and their semiclassical limit is obtained fbd—. For  states that on large time scales periodic orbits tend to distrib-
example, for a canonical mapping on a two-dimensionalte uniformly in phase space, their density increasing expo-
torus (here taken to be a two-dimensional phase space Witientially while the intensity decreases. Thus, on large time
periodicitiesQ and P in g and p directions, respectively  scales, long periodic orbits which are almost all primitive
the corresponding quantum propagator acts in amjominate the phase space.
N-dimensional Hilbert space and is represented by an The evaluation of Tr(U")|?, in the semiclassical limit
NN unitary matrixU. This follows because the number of N,  can be done as follows. As is obvious from Eq.
statesN allowed to be associated, by quantization, with the(2.21), [Tr(UM|? contains terms of the type

finite classical space is restrictaﬂhcertainty prlnCIplg‘i N is exn:i (W] _Wk)/ﬁ]v and, therefore, for a Comp|ete evaluation
determined by the following relation: of K,(7), it becomes important to study the distribution of
amplitudesA; and actiondV; . But, in the semiclassical limit
2mhN=QP. 219 h—0, the s]ignificant contJributions comes only from those
torbit interactions for whichwW;—W;<o(#%). The contribu-
"tions from other orbit interactions become negligible, in this
limit, due to the presence of the rapid oscillations leading to
destructive interferences. Thus, for the leading order semi-
classical asymptotics ofTr(U")|?, one needs to consider
only “diagonal” terms[7] with W;=W;, which, in largen
For quantum maps acting in a finite Hilbert space, Egslimit (such thatn/N=r7<1) can be evaluated by invoking
(2.3 and(2.9) can be used to write the quantum-mechanicalHannay’s sum rule for the amplitud€s],
two-level form factorK,(7),

Here N plays the role of the inverse of Planck’s constan
with N—o as semiclassical limit.

C. Semiclassical form factor for quantum maps:
Symmetry preserving cases

2 (1 ra r |Tr(U“)|2292§j: Aj2- (2.22
KZ(T)—Wfodr op E+W op E_W
Now by using Hannay’s sum rule for the intensities, which
X exp(2ir 7)> 2.18 comes from the principle of uniformit}s] and is given by
E 2
oo g i) Ne _
Using Eq.(2.4) in Eq. (2.18), K,(k) can further be reduced Z Al 5<|Tl N/ g’ |7<1, (223

in the following form:

one can obtain the two level form factiin(7) [7,2], which

) turns out to be same as that for random matrix ensembles,
Ka(7)= Nﬂ; mE:O exfik(En—Em)]—Néno (219 the under smalk approximation(Eq. (2.14)]

Ka(7)=g|7. (2.29

Note that the above result is valid only fpr|<1, i.e.,|n|

] ] . <N. This limit of validity comes into existence due to con-

wheren=Nr7. Now the semiclassical expression Kb(7)  siderations of only diagonal terms in the evaluation of
can be obtained from above equation by using semlclassmﬁr(un”z_ For case$r|=1, one needs to consider contribu-

form of Tr(U") which can be expressed as a sum over periyions due to the constructive interference of very long peri-
odic orbits in classical phase spage=(q.p)) [5], odic orbits[with W;—W;=o0(#)] too, which once again re-

quires an understanding of the distribution of periodic orbit
m LT PLU LU
TrUM =g, >, AMexp i —— —imy/2
Jom

N—-1 N—-1

1
=N|Tr(un)|2—N5n,O, (2.20

actions. Moreover, in the derivation of spectral densty in

terms of periodic orbits, the quasienergy is assumed to be
(2.2)  complex, with a very small imaginary paet (required to

) 1 avoid the divergence of the formula, occurring for real ener-

Here the amplitude A; [=nj[d(rqa=ro)/drel; 25 =  gies. Due to the finiteness o€, the periodic orbits with
nj(sinhaj)‘l] of the contribution from eackimultiply tra-  periodn>n* (that is, the oscillations with energig#<e,
versed periodic orbitj, with periodn, depends on the sta- whereSE=#%/n ande=%/n*) cannot be taken into account
bility «; of the orbit; for long periodic orbitsA; can be in this formulation.
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The result obtained in Eq2.12 for the semiclassical levels are included. For example, a good choice is to take the
form factor is same as that for exact symmetry classes dfize of the averaging range to Beitself, i.e., to define
RMT, under the same limit. For examplg=2 and 1 give 1 (E
corresponding COE and CUE results, respectiygly :_f , /
(f(E))e EJ, f(E")dE’. (3.2

I1l. HIGHER ORDER SPECTRAL CORRELATIONS . . . .
Therefore the variation of amplitude, in the above equation,

In this paper, we restrain ourselves to the study of thewith respect to energy is very sméiimplitude being a clas-
k-level correlation functions in short time limisvhere pe-  sical quantity and can be ignored. This gives
riod n of the longest periodic orbit, in phase space, is much g3
greater than unity but much less thah i.e., 1<n<N or Ry(E;,Ey,Eq)= —5 > AA A
|7|=n/N<1), which will allow us to use the principle of R I N momme==1 “
uniformity in the evaluation of cross multiplication &fpe- i
riodic orbit contributions, thus simplifying the calculations. Xexﬁ{(mini/ﬁmjn/z)ll}
For simplicity, and to explain our method, we first calculate N
the third and fourth order correlations, and then generalize

them tokth order correlations. x{exp (min+myn; + myn)iE])

i
A. Third order correlation X < ex;{(miWi +mW,+ mka)g} > .
For simplicity, let us first calculate the third order corre- (3.3
lation function. The substitution of Eq&2.4) and(2.2]) into
Eq. (2.3), with k=3, gives us Due to averaging oveE, the contribution of various terms in
. Eqg. (3.3 will be determined by the fact of whether their
9 exponents contaife or not; the terms containing a factor of
Ra(E1 Bz, Be) = Wg< ”Zk m; ‘m.%k:tl AiAA type expiEn] will not make any contribution. Thus we can
: divide all the terms into following two classes.
. Ein/ 2 N W, Case (1). Terms with all;n n;, and n, of the same sign
XU EXRIMi| e (i.e., either all positive or all negativeOn averaging over

E, the contribution of these terms Ry turns out to be zero

. 2w W, due to presence of a factor of type Exp(|n;
% J i

xexp{lmj njE+nj/2W+7 } +|ny+Ind)E].
Case (2). Terms with any two amog ,n; ,n,) with the
. W same sigr(+ or —), and a third one with opposite sigihe
Xex[{'mk nkE+7 H> 3D terms under this case contain a factor [expn;+n;

—nyiE] (and its permutations As mentioned above, these
Here() implies a local averaging with respect g that is,  terms will make a nonzero contribution if,=n;+n; (or
the energy averaging over ranges which are classically smati, =n;+n,, nj=n;+n,). Thus Eq.(3.3) can be reduced to
but quantum mechanically large, so that a large number othe form

2mmi , im 2mi )
N (ni/1+ n]/z) ex T(Wi—’_wj_wk) +ex T(ni/l_nj/z)

3
9
Ra(E1,Ep Eg)= W% AiAjAkmgl ex

im 277mi , im
X<eXF<7(Wi_Wj+Wk) >+eXF<T(nj/2_ni/1))<eXF<7(Wj_Wi+Wk))> (34)

with second and third terms correspondingite-n;+n,and =W, +W,;—W, will also be a Gaussian random variable

nj=n;+ny, respectively. _ with mean zero, the variandeeferred to as va#) of which
To evaluate terms of typge'WitWi=Wd/%) “we proceed is given as follows:

as follows. HereW,, the action of a periodic orbit with pe-

riod n;, can also be written as a summfsingle step actions varg=((W;+W, —W,)?) (3.5
Wi=Er‘:_olw|(q,+1,q,)|qn>:q0. For strongly chaotic dynam-
ics and on large tine scales, these single step actions can be = (W7) +(W?) + (Wg)=3T. (3.6

regarded as independent variables with a pair-correlation co-

efficient decaying exponentially to zero. An extension ofHereT is the average time period of periodic orbits given by
central limit theorem therefore implies thdt;’s are Gauss- T=#/JE, wheredE is the energy range over which average
ian random variable on large time scales. Hences taken.
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As on large time scales, the phase space is densely and Further calculation oK3 can be done by substituting Eq.
uniforemly covered by periodic orbits, and a typical trajec-(3.7) in Eq. (3.9), and by making use of following equalities
tory can be approximated by a very long periodic orbit. This(see the Appendjxwhich follow from the principle of uni-
permits us to approximate the average of éwj() over all ~ formity:
periodic orbits by a phase-space average. This gives
(exp(i ) )=exp(—vard) = exp(— 3T). Here, in Eq(3.6), the > n35(| nj) (n%) f(0)

f . . . i T =
correlations between various actions i.e., terms of type !
(W;W,) has been approximated to zeMyi(is assumed to be
random variable But, as mentioned in Sec. I, the correlation and
between actions is not entirely zero, that W,’s are not
exactly random variables. The distribution functiB(lﬁ) of DA
these actions can be written &% 6) =P andonit Pcorrelated TN
where the random part of the distributi®h,,gomdominates
the nonrandom parPyemes Therefore, on large time The result obtained depends on wheth&r are greater or
scalesP(6) can be approximated by a Gaussian, which g|ve§ess than zero. This gives rise to the following three possi-
us the first order term dRs. To calculate higher order terms Dbilities. Case (1) Bothr;, 7,>0 or 74, 7,<0,
which are not negligible on very long time scales, the corre- 3 2 2
lations between actions must also be taken into account. K= 9 2 Agﬁ+Azﬁ |7y — ni

To further simplify the calculation of Rj, e ] ! YN
A(=ne ", in Eg. (3.4, can be replaced by
AA(nt+n ) for the terms which survive due to 8 [y — ﬂ)
nk—n +n;. Similarly for terms with n,—n +nk or 2N
(nj=n, +nk) A can be replaced bAA; ', (1 nin;
andA A 'ni(1-nin; 1), respectively. This Ieads us t0 fol- =g(| 7 +]7])e73T. (3.13
Iowmg form of Rs:

(3.10

N
ST R

e 3T (3.12

It is obvious from the above equation th&j falls very rap-
idly to zero for large¥ values, that is, for time scales on

2 A2A2( ) 2 ex (n/ +1,/) which sufficiently long periodic orbits exist in the phase
Rs= N3 m=+1 ! 2 space. On long time scales, therefore this is similar to the
RMT result[Eqg. (2.13]. Case (2)7,>0, <0 or 7,<0,
+2 Ani(1-njn Y 72>0,
i

3
Kg= —32 APni+ AN — At —Ann )

X E ex (n/l n-/’z)) ]

n; n;
o Ind= 3 {17 e @14

=g || f1([ o))+ | 7ol Fa(| 7o) = Fo(| 7a])
( n/1+ nJ/Z))e 3T. (37) _f2(|7_2|)]e73T. (315)

+; A?ni(1-nin; Y

erx

On substituting values df;=f(0,1) andf,=f(0,2) (see the
Here the second term corresponds f=n;+nc Or  Appendiy in the above equation, we obtain
ng=n;—n;, and the third term correspondsnp=n;+n, or K =~q(|,|—|7,|)(eN2—eN1)e~3T, where N|7;| and

Me=Nj— N _ _ N|7,| are of the same order as that Bf This results in a
The Fourier transform oR3 gives us the third order form npearly zerok ; on large time scales which is again similar to
factorKs, the RMT result.

Note that the above-mentioned similarity betwéenre-

3 D [(1 113 71+ (P 0) 7] sults for quantum maps and RMT has been shown here only
Ka(ry,72)= | e7mHiaiaimriizrialn for those time scales at which principle of uniformity is well
applicable to the distribution of periodic orbits. No conclu-

XR3(ry,rz,ra)dridradrs (3.8)  sion can be drawn about the short time scales from the above

analysis, although the deviation of two-point fluctuation
_ measures for quantum maps from those of R\2]7] sug-
=J e? il antenlR, (/) /,)d/1d/ gests that we expect the same for higher orders too.
(3.9
B. Fourth order correlation
(wherer;—r3=/1 andr,—r3=/"). Equation(3.9 follows To calculate the fourth order correlation function, we sub-
from Eq.(3.8), asR; depends only on differences—r; and  stitute Eqs.(2.4) and(2.2)) into Eq. (2.3), with k=4. This
r,—rs. gives us
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R4(E1,E5,E3,Ey)

E >

ik mp,my me==1

AAAA,
X (exd (min;+m;n;+men,+mn,)iE])

27i
Xexp{(m ni/1+mn; /2+mknk/3)W}

i
X < ex;{ (myW; + my W + m W, + err)gD .

(3.16

Again the significant contributions &, come from follow-

ing four types of termsCase (1) Terms where pairwise can-

cellation occurs, i.e., terms with ;#n,,n;=n, and
W; =W, ,W;=W, (and their permutations)The contribution
R, from such terms can be written as follows:

Ryi= 2 > AIA?

perm ij
X 2 ex (n(/l /3)+ni/ ).

(3.17

Here = ¢, refers to the sum over all possible permutations

of pairs.
Case (2) Terms with;a-n;—n,—n,=0 (and other such
permutations) The contributions tdR, from terms withn;

—n;j—n—n,=0 can be written as follows:
4 2 2
g_z A2 n.n,— w_ m
N4 K ! ik n; n;

im
ex 7(Wi—wj—wk—wr) . (3.18

Similarly one can write contributions from terms with
nj—n;—n,—n,=0 and ng—n;—n;—n,=0). The symbol
R,i; will refer to the sum of contibutions of all such terms.

The contribution Ry;; from a term with n,—n;—n;
_nk:O iS

1 1 1
272 -
Raiii = NAE A A Ak(n nJ njNnk nink)

xZex

m=x*x1

(n 1N/ o+ nk/3))

><<exp( - %m(w,—wi—wj—wk)) > (3.19

Case (3) Terms with;f-n;—n,—n,=0 (and other such
permutations) The contribution toR, from terms with
n;+n;—n,—n,=0 can be written as follows:
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mi ,
T(n|/1+ n]/z_nk/S)

—%(Wi+wj—wk—wr))>. (3.20

Similarly one can write the contributions from terms

ni—ni—ng+n,=0 and nj—n;+nc—n,=0. The symbol

R, refers to the sum of contibutions of all such terms.
ThusR, can be written as follows:

Ry= (3.2)
where in each of the contributiorR,;;—R,;, the terms of
type (eVitWitWk=Wry can be replaced by~ *T (as done ear-
lier for K3). The Fourier transform dR, gives us the fourth
order form factorK,,

Ryi + Raii + Raiii + Rajy

K4( 1, 7o, 7_3) _ (2,”_)3J’ e27Ti[/1T1+/27'2+/3T3]

XR4(/1,/2,/3)d/1d/2d/3 (322
=Ki+K;i +Kjii +Kj, (3.23

where
K 27/ T+ oo+
i,ii,iii,iv—f e il 171 272 373]R4(i,ii,iii,iv)

X(/1,/ 2,/ 3)0/ 10/ 54/ 5.

Now K, can be calculated by substituting E48.17)—
(3.20 into Eq.(3.23, and using equalitie€3.10 and(3.11).
Again, as forK;, the result depends on whetheis are
greater or less than zero. This gives rise to the following
three possibilities.

Case (1)7q,75,73>0 or 7,7,,73<0. In this case, ex-
cept for K,;i , the contributions from all others, namely,
Kai, Kaii » andKy;, , are zero. Thus

1 1
Ka=Kaii AZAZAZ( )
4 4iii = % mE;rl njnk njnk njnk
mn, mn mny
X(S Tl_WI>5(7'2_ NJ) (73_T)e 4T
(3.29
=g(| | +| 72l +| 5] e (3.29

Due to the presence of the exponentially decaying factor,
K, turns out to be approximately zero for largevalues,
which is again similar to RMT results.

Case (2) Any two ofq,1,, 73 positive (negative) and the
third one negative (positive) et 7;,7,>0 and7,<0 (where
i, j, andk can take any of the values 1, 2, or B this case,

Kai=g[ 8(7i+ 7| 7il| 7j| + 8+ )| 7il| 7], (3.26



55 HIGHER ORDER CORRELATIONS IN QUANTWM . . . 3893

K4ii:g[|Tk|f1(|7-i|)f1(|7-j|)—f1(|Tj|)f2(|7i|) nonzero contribution td, in large time limits. The above
Lt results are also valid if;, 7;<<0 and 7,>0. A comparison
—fa(lnDfa(| 7 1e ", (3.2 with RMT results shows that this lowest order contribution

to K, is same as that in RMT fdrry|,| 7,|,| 73| <1.
Kaiii =0, (3.28

C. kth order correlation

K, = | f +| 7| f —f e 4T,
4o =07l fa( 7l) |TJ| () =Fal|7d)] (3.29 The method used in calculation of third and fourth order

form factors can further be generalized to #&ih order cor-
As is obvious from above equations, ody; does not con- relation function The substitution of Eq§2.4) and (2.21)
tain an exponentially decaying factor, and therefore makes mto Eq. (2.3) gives us

g . ( 2w Wi, . ( Wi,
Rk_NRil’Z_'ik AilAiZ“.Aikmlj_.%k:tl exg imq nilE+ N nil/1+ 7 - - eXP 1Myl N E+— 7
(3.30
|
It can further be rearranged as follows: the multiplying factor ofE in the exponent is zero will con-
tribute significantly toR,. Due tok summations over peri-
g~ X odic orbits, each summation containing a large number of
Rk:ﬁki 2 i |1:[1 A, them, there are many possibilities, resulting in a zero coeffi-
b X cient of E. These various possibilities may arise, due to the
K “groupwise cancellation of periods” in the first exponent of
><m Zn ) <exr{iElzl myn; D Eq. (3.32, containing various groups of periods in the expo-
10 K==+ =

nent, where in each group the positive traversals of a few
S orbits are canceled by the negative traversals of a few other
<ex;{ D orbits. LetG stand for any division of indices 1,2, . |k into
h g subgroups G, ,G,, . .. ,Gg); then a term appearing in Eq.
(3.3)  (3.33 will make a nonzero contribution By, if it satisfies

following condition:

Due to*=1 values taken by eaah,, [=1,2,... k, there
can be 2 different combinations ofi; 's in the first exponent

of eq(3.31). Let M(r) be the set of a particular choice of
values for eachm, in the set{m;,m,, ... m}. Therefore o o _
there can exist '2 such sets, denoted by(r) with where the summation is over indicegpresent in subgroup
r=1—2% of which only 2! sets are distinct. Here two G;, and so on. As is obvious, one of these subgroups will
setsM(r) andM(r') are considered indistinct if the values contain indexiy. Later we W"! need to distinguish it from
of eachm, in M(r) is oppsite(in sign) to that inM(r’). Now  other subgroups; let us call@;. ThusF,, can be rewritten
X i r
Eq. (3.31) can be rewritten as as

; mn =0 (j=12,....0), (3.39

|<2k

i p
Rk _RE FM ’ (332 FMr:% <exﬁ{%lzl m|Wj|

Here 25 implies the summation over all possible divisions

q
>H Co. (339
j=1

WhereF,\,Ir is given as follows:

of indicesiy,iy, ... iy into various subgroups, ard; im-
plies the product of the contributior@Gj from all Gj's for
2 11 A.|< ex;{lEE mln"D one such division, where
..... 'k =1

R Nl et

(333 Here thep indices contained in subgroup; are denoted by
In the above equation, the values takerrys are the same J1:J2: - - .Jp, With m; as the coefficient ofy , andb’s refer
as forM(r). to /’s associated with these indicée.g., if jj=i;, then

Now for the same reason as given for the third orde =71, and so on if jj=iy, thenb;=b,=0. Note that, in
correlation function, only those terms of E§.33 for which groqu the indexj, is always chosen to bg (so as to

271'k_l
xex;{i—Z mn; 7,
N =1 !
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simplify the presentationwith b;=b,=0. Now by using The substitution of Eq$3.39 and(3.40 into Eq.(2.9) gives
ni =>P_,an;, with @y=—m,;/m;, andA; =n; e" i, one us following result forK,:

i1 =2 T ] h
can show that

p p A;I'H p Aj“s+1 Kie=Kyi+ Kiii (3.41
|
H A“:z ) =1 H Sas ' (337)
I=1 =2 n. s=2#1 N,
J| Is where
By using Eq.(3.37), ng can further be reduced as follows:
p AMTL p o p%stE gk
_ I Is Ky > D> APAZ.A
CGj J'1,2. il (E “ nf'_1s=1_2[¢| njas "N permjy, ..., i 1 ls Jk-1
P
2im| & X O| tok—1— N
xexp — - > (b—bympn; | |.  (3.38 m==1
=2 (k—1)/2 n
Note here that, foj=j’, b;=0. It can be seen from the x 11 5('[2,_1— %) S8ty 1+ 7)) (3.42
above equations that the most significant contributioRto =1
comes from those terms where a pairwise cancellation of
time periods; ,n;,ny,ng, ... (appearing as a factor & in and
the exponentas well as actiondV; ,W; , W, ,Ws, ... (so
that there is no exponential degayccurs which is possible
only whenk is even. The contributio®,; from such terms g M, Gj AJ.“l|+1 p AJ.”‘S+l
. . S
can be wntteE as follows: KK”ZWZ EG: i 2 ,ZZ o T :l—le o
g 1o eees ip i S is
Ri=tfk 2 ATAL A
Nperm i g 13 k=Im==1 b min s,
h —k7
2 mmi (k—=2)/2 X |1;[2 5( t,+ T) 5( Z t|) e "7, (3.43
XexXn |:21 nj, (ba—1=Dby)
wheret, is the 7 variable associated with, with t,=0 if
) P |- (339 b,=/. By using Eq.(A3), one can further reduce above
2 perm IMplies the summation over all possible permutationsequatlons in the following form:
of indicesjq,j,, ... ,jkx taken from setiq,i,, ... i . The
contributions from all other terms contain an exponential
term, with a sum over actior(@& units of#), as its exponent ki= EP: [&6(p,+ 7p,)(7p,+ 7p,) - - (K/2—1)termd
[i.e., term(exp(EmijWij))]. In large time limits, the appli-
cation of the central limit theorefCLT) again permits us to X| 7o 7o, - '|Tp(kfl| Ok everv (3.44

replace this term bg 7. The contribution of such terms to

Ry can be given as follows: . .
where 2, refers to sum over all possible permutations of

o M, p Aj“ll*l p Aj“s+1 indices{py,p,, - - - ,p4} taken from sef1,2,... k—1}, and
Rkii:NIZE E H ) 2 2 ) o =1 H ag
r G | i1 =2 njl s=2#| njs

M(r)
Kkiizgzr: %: H DejeikT (3.49
(b|—b1)m|nj| eikT. (34@

with DGj given as follows:

p
> af(e+la-1) [l flastlaey, Gj=G, (3.46
=2 s=2,#I|

5(% t')[l_ﬁz o(hy+mp)

p

> af(+la-1) [ fastlay), G=Gj, (3.47)
=2 s=2,#I|

p
[1 sthi—m)
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with h;=sgn{,). Here, as obvious, the contributiét; exist The quantum dynamics has a time reversal symmeétry
only for for all even order form factors. For odd order form for y=0 and a parity symmetry for 8,=0. Though the
factors, onlyKy;; contributes. But, on large time scales,the T symmetry may be violated foy+#0, a still more general-
presence of an exponential decaying factor makes this corized antiunitary symmetrg=TP=PT can be preserved in
tribution very small. Thus, on large time scalgg., n—x, the system ifd,=0 [14,2]. For K?>N#, the quantum dy-

N—o, n/N<1) one can write namics is delocalized in the phase space and two point spec-
tral fluctuation measures have been shown to be well mod-
Kk-0dd™=0- (3.48  eled by various symmetry classes of RMT4,2. In the

) ) opposite limit of weak chaos, namell?<N#, the eigen-
A comparison of Eqs(3.44) and(3.47) with Egs.(2.14 and  states localize in momentum space, and one obtains a Pois-

(2.13 informs us that the results obtained for both odd asson distribution for the spectruf@]. For numerical compari-
well as even order form factors agree well with that of RMT.gon of higher order measures with RMT, therefore, we
choose various parameters such that conditiGe> N7 is
IV. NUMERICAL VERIFICATION always satisfied.

This section contains a numerical study of third and _
fourth order fluctuation measures, namely, skewngsand B. Numerical study of skewness and excess
excessy,. We choose the kicked rotor system for this pur- In this section, we numerically study skewness and ex-
pose, as it has been an active model of research, containingcass, that is, the third and fourth order spectral fluctuation
variety of features such as localization, resonance, depemeasures, for the quantum kicked rot@KR) spectra and
dence of the spectra on number theoretical properties, etGcompare them with corresponding RMT results. Although
and has been used as a model for a very wide range ahe kth order form factor can easily be calculated for quan-
physical systems. For a better understanding, we briefly reum mapgsee Eq(2.10], we choose to study; andy, as
view the quantum and classical mechanics of the kicked rocorresponding numerical resultgr form factorg in RMT

tor in this section. are not available. But, as botjy andy, can be analytically
expressed in terms of third and fourth order correlatiBas
A. Kicked rotor: classical and quantum dynamics andR, (see Ref[15] for these expressiohsnd, therefore,

are related to form factork; andK, [Eq. (2.8)], any con-
clusion about the validity of the RM model for the former
measure will be applicable for the latter too.

The kicked rotor can be described as a pendulum su
jected to periodic kickgwith period T) with the following

Hamiltonian: Both skewness and excess are the functions of third and
(p+ )2 o fourth order central moments of a distribution, respectively,
H= > +Kcog6+6, 2, &(t—nT), (4.1 which contain information about the probability of higher
n=-—ow

order events as compared to lower order. More precisely,

) o skewness denotes the absence of symmetry in the distribu-
whereK is the stochasticity parameter. The paramefeasid  tion and can be defined as follows:

0, are introduced in the Hamiltonian in order to mimic the

effects of the time reversallj and the parity P) symmetry ma(r)

breaking in the quantum system. yi(r)= 1) (4.3
The related quantum dynamics can be described, by using

Fltiquet’s theorem, by a_discre?e time evolution operatoie excessy, describes the difference between the kurtosis
U=BG, where B=exp(—iKcos@+e)n) and giyesie., the fourth central moment calculated in units of

- i 2
G=exp(—i(p+v)/4#). The nature of the quantum dynam- (e square of the second central momaitthe distribution
ics and therefore the statistical properties of the associateghq that of a normal distributiotkurtosis is 3

guantum operators depend drandK. For a rational value

of T/27, the dynamics can be confined to a torus, while for (1)

irrational value it takes place on a cylinder. We employ torus vo(r)=—7—~-3, (4.9
boundary conditionsq’ =q+ 2, p’'=p+27M/T) by tak- o’(r)

ing 2 T/27w=M/N; bothp and ¢ then have discrete eigenval- 5. . . .
ues. andJ can be reduced to a finitd-dimensional matrix  Whereo* is the variance in the number of levels in a length
of tr,1e form[14—16 of r mean spacings, and; and ., are corresponding third

and fourth central moments. If the excess is less than zero,
1 K [2mm the curve is platykurtic, and, if it is positive, leptokurtic.
Umnzﬁex —|%co T+00

For bothy,; and vy, studies, the spectral data consists of
the eigenvalues of 50 matrices of dimensiNir=199 ob-
tained by diagonalizing th&) matrix [Eq. (4.2)] for various

, values ofK in the neighborhood oK =20 000. The choice
of such a high value oK is made to ensure the delocaliza-
(4.2) tion of quantum dynamics which makés$ a full random
matrix (see Ref[2]). Due to strong sensitivity of the eigen-
where N;=(N—1)/2 (with N odd and m,n=-Ng, values to small changes K, these sequences of quasiener-
—N;+1,... Nj. gies can be regarded as mutually independent.

U . (1(m=n)
X > exd —i(m2hI2—myl)]ex —|( )
=N, N
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FIG. 1. The behavior ofy,(r) with respect tar, with N=199, r

A=1, T=1, and K=20002-20 050, and for(a) y=0.0 and
bo=/2N, TR preserved(b) y=0.7071 andfo= /2N, TR bro- FIG. 2. The behavior ofy,(r) with respect tar, with N=199,
ken. The solid curve depicts the corresponding RMT behaviorg =1, T=1, and K=20 002-20 050, and for(a y=0.0 and
namely, COHin (a)] and CUE[in (b)] limits. 6o= /2N, TR preserved(b) y=0.7071 andf,==/2N, TR bro-

ken. The solid curve depict the corresponding RMT behavior,

The results obtained foy; andy, of the QKR spectra are namely, COHin (a)] and CUE[in (b)] limit.
displayed, as functions af, in Figs. 1 and 2. For compari-
son, the corresponding RMT resultsken from Ref[15]) correlations in qguantum chaotic maps can be well modeled
are also given in each of the figures. The good agreemety corresponding ones in RMT. By using the example of a
between QKR and RMT results indicated by each of thesdicked rotor, we have also verified this numerically. These
figures reconfirms our semiclassical results obtained in Secesults are also valid for conservative Hamiltonians; this fol-
lll. Furthermore, as indicated by these figures, the highelows due to similar expressions for the level density in terms
order correlations, e.g., third and fourth order, seem to bef classical periodic orbits for both casésee Ref[4] for
very weak, nearly zero, at very long energy ranges, and levevel density for autonomous cas&he various summation
els seem to be uncorrelated while strong correlation seem twrmulas used to evaluate fluctuation measures such as sum
be existing for short ranges. A continuously decreasing valuever amplitudes(see the Appendixwhose derivation de-
of v, implies the tendency of the distribution to appear morepends on the uniform distribution of periodic orbits and
and more symmetric as the range of the distribution in-therefore only on the strongly chaotic nature of dynamics,
creases, and finally to acquire a Gaussian form for long erstill remain valid. Thus one obtains similar results for form
ergy ranges. This conclusion is also supported by gur factors in autonomous systems. This should not be surpris-
study, which shows a larger probability of higher ordering, as both Gaussian ensembltree ensembles of Hermitian
events for QKR at small energy rang@s compared to the matrices and therefore of conservative Hamiltonjaasd
Gaussian cagevhile, for large energy ranges, it acquires thecircular ensembles are known to have the same statistical
same form for both. behavior in semiclassical limftL6].

Although the study presented here deals with higher order
correlations at a fixed value of the parameter, we also expect
the validity of the random matrix model for higher order

We conclude this paper with a summary of our principalparametric correlations in quantum chaotic spectra, but again
results, and a brief discussion of the open problems. We havenly on long time-scales. This intuition, based on the anal-
shown that, in long time limits, the higher order spectralogy of second order parametric density correlations for me-

V. CONCLUSION
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soscopic systems with a disordered potential, the one dimemroBe Fluktuationen” of the Deutsche Forschungsgemein-
sional many body Hamiltonian(Calogero-Sutherland schaft” during my stay in Essen.
mode), scattering systems, quantum chaotic systems, and
random matrix models, as well as the existence of a common APPENDIX: CALCULATION OF F(A,B)
mathematical baséonlinearoc model and supersymmetry
approach further encourages us to hope for the extension of To evaluate the sum
this analogy to higher order correlations as well. .

Ignorance about action correlations on very long time A n;

: : : fab)=2> —54| |-+

scales handicaps us from doing the same analysis on these : ~ P N/’
scales. It will also be of interest to study these correlations on .

short time scale.s. It is on these scales where second Or‘_jWhereAj is the amplitude and; is the period of the orbit in
spectral correlations deviate from RMT and show a nonunig|assical phase space, we remind ourselves that, in phase
versal behavior. One expects to see similar deviations fognace the orbits proliferate exponentially with time and the
higher orders too. For a complete understanding of h'gheﬂﬂensity of distribution of periods over long orbits is given by
order correlations in quantum chaotic systems, therefore, ON&xp(2y|n|)/|n|, with y as the entropy of the classical motion
should study the action and periodic orbit correlations; thig, large time limits. This, along with the approximation
will give us some insight into the behavior of fluctuations in A;=nexp(vn), enables us to make the following re-
other systemsgabove mentiongdtoo. We intend to do so in pIJace;nent: :

(A1)

the future.
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