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Higher order correlations in quantum chaotic spectra

Pragya Shukla*
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The statistical properties of the quantum chaotic spectra have been studied, so far, only up to the second
order correlation effects. Numerical as well as analytical evidence that the random matrix theory can success-
fully model the spectral fluctuatations of these systems is available only up to this order. For a complete
understanding of spectral properties it is highly desirable to study the higher order spectral correlations. This
will also inform us about the limitations of random matrix theory in modeling the properties of quantum
chaotic systems. Our main purpose in this paper is to carry out this study by a semiclassical calculation for the
quantum maps; however, results are also valid for time-independent systems.@S1063-651X~97!15402-2#

PACS number~s!: 05.45.1b, 03.65.Sq, 05.40.1j
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I. INTRODUCTION

In generic Hamiltonian systems with many degrees
freedom, the classical dynamics shows an enormous rich
in structure, increasing with the interaction between degr
of freedom. The classical motion is mainly of two type
integrable and chaotic; see@1# for details. This paper deal
with the quantum properties of Hamiltonians whose class
limit is chaotic.

The strongly chaotic nature of underlying classical d
namics suggests that we intuitively expect some kind of r
dom behavior in quantum dynamics as well. This is beca
the classical dynamics is indeed a limit (\50) of quantum
dynamics, and therefore the nature of former should
somehow reflected in the latter. In fact, various analyti
and numerical studies~see@2# and references therein! have
confirmed that the manifestation of chaotic behavior in qu
tum dynamics occurs through randomization~partial or full!
of matrices of associated quantum operators. The spe
and strength fluctuations of these operators can be well m
eled ~up to second order correlations! by one of the various
universality classes of random matrices. Most comm
among these are the Gaussian orthogonal ensemble~GOE!
and the Gaussian unitary ensemble~GUE! and the circular
orthogonal ensemble and the circular unitary ensemble@3#.
The former pertain to autonomous systems whereas the l
have application in the study of nonautonomous syste
such as quantum maps.

The presence of random matrix theory~RMT!-type spec-
tra in quantum chaotic systems can be explained by
Gutzwiller-semiclassical quantization scheme@4# for time-
independent systems which uses the elegant techniqu
path integral sum given by Feynman, and relates the cha
manifolds of classical dynamics to the eigenfunctions
quantum dynamics. A similar formulation is also given f
time-evolution operators of quantum maps@5#. The spectral
fluctuation measures can then be determined approxima
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by using the principle of uniformity@6#, which is based on
the uniform distribution of periodic orbits at large tim
scales, and gives a technique to evaluate the sum of peri
orbit contributions. Using this technique for autonomo
Hamiltonians, Berry@7# provided an explicit expression fo
the semiclassical form factorK2(t)—the Fourier transform
of the two-level spectral correlation function—for values
t in the ranget!1 ~the time measured in units of 2p\d̄,
where d̄ is the mean spectral density!. This result has an
exact analogy with the corresponding RMT behavior; f
lowing essentially the same technique as used by Berry
autonomous Hamiltonians, this analogy can also be pro
for quantum maps@2#. In the regiont@1 also, the limiting
behavior was analyzed by Berry using a semiclassical s
rule which makes use of the properties of the function rela
to the quantum-mechanical density of states.

Notwithstanding the good agreement between RMT a
statistical quantum chaos up to second order correlat
~long and very long!, still there is no reason to believe tha
the random matrix theory~RMT! can model allnth order
spectral as well as strength correlations. The numerical s
ies for many systems~e.g, Baker map@8#, quantum kicked
rotor @2#, etc.! have already indicated that even second or
correlation effects, when considered on short time sca
~i.e., very long range correlations!, do not follow the random
matrix prediction and are nonuniversal. This is the ran
where the classical dynamics is still diffusive, and period
orbits are not yet uniformly distributed. The deviation fro
RMT in this range agrees well with our intution, as on
should expect RMT to be applicable only on those tim
scales where the variables associated with classical dyna
are random enough to fully randomize the matrices ass
ated with corresponding quantum operators. Moreover,
sum rules for the matrix elements of quantum chaotic ope
tors @9# have already been found, differing from those
RMT. But a study of higher order correlations between ze
of Reimannz function shows a good agreement with RM
@10,11#.

Thus it is relevant to know what properties and up to wh
order the behavior of quantum operators can be modeled
RMT, and when it ultimately breaks down. Our attempt,
this paper, is to make a comparative study of one such p

ter
.
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55 3887HIGHER ORDER CORRELATIONS IN QUANTUM . . .
erty, namely, thenth order spectral correlation, as a
n-level spectral fluctuation measures can be expressed i
terms. We fufill this goal by carrying out a semiclassic
study of the Fourier transform of then-level correlation
functionRn ; the reason to consider the Fourier tranform l
in the covenience of its analytical as well as numerical c
culability. We proceed as follows.

The Gutzwiller formulation gives us the density of stat
as a sum over periodic orbits, and this gives rise to perio
orbit interaction terms inn-level density correlation function
Berry, in order to obtain result for a two-level form facto
neglected the contribution from these interacting terms a
first order approximation~the so-called diagonal approxima
tion!. However, for a complete evaluation of the form facto
one has to calculate the contribution due to interacting ter
The lack of the knowledge of action correlations handica
us from doing so. One attempt in this direction was made
Ref. @12#, in which, by assuming the complete validity o
random matrix theory, the periodic orbit correlations we
calculated from the RMT form factor. These, when co
pared with numerically obtained correlations~for Baker map,
hyperbola billiard, and perturbed Schro¨dinger cat map!,
showed a good agreement. The numerical study of these
tions also indicated the presence of an uncorrelated com
nent~exponentially larger than correlated part!; in this paper
we use this fact. We assume that, on long time scales
first order approximation, actions are uncorrelated, and
calculate thenth order form factor. Under this approxima
tion, the result turns out to be same as that of RMT, which
also confirmed from the numerical analysis for at least t
higher order fluctuation measures given in this paper. Fo
complete calculation of thenth order form factor, the action
correlations which will determine the higher order term
should also be taken into account.

In this paper, we present our semiclassical study for qu
tum maps, but the method can easily be generalized for ti
independent systems, and one obtains the same results.
larly the RMT is given only for circular ensembles~CE! but,
once again, the final results are also valid for Gaussian
sembles~GE!, which follows due to GE-CE equivalence fo
large dimensions!.

This paper is organized as follows: In Sec. II A, w
briefly review the definition of various random matrix e
sembles. For later use, we also discuss the relation betw
the n-level form factor and correlation functions. Sectio
II B deals with a brief review of the fundamentals of qua
tum maps and the earlier obtained results for the two-le
form factor. Both the Secs. II A and II B are included in th
paper so as to clarify the ideas used in Sec. III, which de
with the higher order correlations and form factors for t
quantum spectra with exact symmetry. In Sec. IV, we n
merically study the higher order fluctuation measur
namely, skewness and excess for a prototype quantum
otic system~that is, kicked rotor!, and compare them with
those of RMT. We summarize our results in Sec. V.

II. PRELIMINARIES

A. Random matrix results

Here we briefly outline the results for thenth order form
factor ~i.e, Fourier transform ofn-point density correlation
its
l
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function! for eigenvalues of the equilibrium circular en
sembles of the random matrix theory.

1. Circular ensembles

The circular-type equilibrium ensembles are ensemble
unitary matricesUb in which the distinct nonzero matrix
elements ofU are distributed independently as zero-cente
random variables;b defines the number of independent com
ponents of the matrix elements ofU. There are three such
ensembles, characterized byb, namely COE, CUE, and CSE
for b51, 2, and 4, respectively. These universality clas
are determined by the invariance of the system under ti
reversal~TR! transformation~or more generally antiunitary
transformation! and are described by the invariance of t
ensemble measure: invariance under orthogonal or symp
tic transformations for TR-invariant systems and under u
tary transformations for TR-noninvariant ones. The inva
ance restricts the allowed space of matrices, for example
that of symmetric unitary matrices for orthogonal invarianc

2. n-point correlators

The aforementioned unitarity ofU implies that its eigen-
values exp(iEj) lie on the unit circle in the complex plane
where exponentsEj ’s are termed as eigenangles. The dens
of states is then defined by

r~E!5(
j51

N

(
k52`

`

d~E22pk2Ej ! ~2.1!

5
1

2p (
n52`

`

exp~ inE!Tr~Un! ~2.2!

and has the mean value^r&5N/2p.
For analytical studies of the spectrum, it is the usual pr

tice to calculate the level density correlations. For ca
where the level densityr(E) can be written as the sum of
smooth part̂ r(E)& and a fluctuating componentdr(E), it is
preferable to study the correlationsRk between the fluctuat-
ing parts of the density. TheRk’s can be defined as follows

Rk~E1 , . . . ,Ek!5
^dr~E1!dr~E2!•••dr~Ek!&

^r~E1!&•••^r~Ek!&
. ~2.3!

Here dr(E)5r(E)2^r(E)&, where Ej5E1 l jD for
j51,2, . . . ,k21 andEk5E, with D as the mean spacin
and ^ & implying the averaging over variableE for ranges
containing sufficient number of mean spacings. By subtra
ing ^r(E)& from Eq. ~2.1! and using notation Tr(Un)5tn ,
dr(E) can further be written as follows:

dr~E!5
1

2p (
n52`,Þ0

`

tnexp~ inE!. ~2.4!

The substitution of Eq.~2.4! into Eq. ~2.3! gives
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Rk~E1 ,..., Ek!5
1

Nk(
J

^t j 1t j 2•••t j k&

3K expF i S (
m51

k

j mDEG L
E

3expF iD S (
m51

k21

j ml mD G . ~2.5!

Here (J implies the summation over all indice
j 1 , j 2 , . . . ,j k , with each index varying from2` to ` ex-
cept zero~that is, none of the indices take value zero!. The
averaging overE reduces Eq.~2.5! in the following form:

Rk~E1 , . . . ,Ek!5
1

Nk(
J

^t j 1t j 2•••t j k&dS (
m51

k

j mD
3expF iD S (

m51

k21

j ml mD G ~2.6!

5
1

Nk(
J

8 ^t j 1t j 2•••t2~(
m51
k21 j m!&

3expF iD S (
m51

k21

j ml mD G . ~2.7!

Here(8 implies(J subjected to the condition that(m51
k21 j m

Þ0. In the semiclassical analysis, instead of dealing dire
with Rk , it is easier to calculate thekth order form factor,
defined as follows:

Kk~t1 , . . . ,tk21!5E expF2p i(
j51

k21

~Ej2Ek!t j G
3Rk~E1 , . . . ,Ek!dE1•••dEk21 ~2.8!

5E expF2p i(
j51

k21

l jt j G
3Rk~ l 1 , . . . ,l k21!dl1•••dlk21 . ~2.9!

Substitution of Eq.~2.5! into Eq. ~2.7! givesKk in terms of
the traces,

Kk5
1

Nk(
J

8 ^t j 1t j 2•••t2~(
m51
k21 j m!& )

m51

k21

dS tm1
j m
N D .

~2.10!

As in this study we confine ourselves to a calculation
Kk only for utmu,1,m51,2, . . . (k21), for these values o
utmu ’s only those terms in(J contribute which have indice
$ j 1 , j 2 , . . . ,j k% much less thanN. Therefore,(J8 in Eq. ~2.5!
can be replaced by(G8 , in which the indices vary from som
value 2n to n, wheren,N with all other conditions the
same.

The above result forKk can further be simplified by using
the recently obtained result for the statistics of the tra
@13#, which indicates that the first few tracest1 ,t2 , . . . ,tn of
large unitary matrices (N large! taken from any of the circu-
lar ensembles display no noticeble correlation. The ensem
average of each of the traces vanishes~that is, ^tn&50) for
all the circular ensembles, due to uniformity of the distrib
ly

f

s

le

-

tion of Ei ’s, the eigenangles; see Ref.@13# for details. But
note thattn and t2n are not independent of each other, a
one can show that@3,13#

^utnu2&5bn/N, n!N, ~2.11!

whereb is 1 or 2 depending on whether the ensemble
COE or CUE, respectively. Therefore, in gener
^) j51

n t j&50, if at least onet j is such that its oppositet2u j u is
not present in the product. This product exists only if t
following condition is satisfied:

K)
j
t j L 5K)

l
ut l u2L 5)

l
^ut l u2&. ~2.12!

Now, as can be seen from Eq.~2.10!, for k odd, every prod-
uct appearing in the sum contains an odd number oft j ’s, and
therefore the above condition can never be satisfied. T
gives, fork odd,

Kk-odd~t1 ,t2 , . . . ,tk21!.0, ut i u i51, . . . ,k,1.
~2.13!

On the other hand, the application of condition~2.10! gives
the following result fork even:

Kk-even~t1 ,t2 , . . . ,tk21!

.a(
P

@d~tp11tp2!d~tp31tp4!•••d~tpk23
1tpk22

!#

3utp1uutp3uutp5u•••utpk21
u, ~2.14!

wherea51 for CUE and 2 for COE. The(P implies the
sum over all possible permutations of indic
p1 ,p2 , . . . ,pk21 over the set 1,2,. . . ,k21.

The result given by Eqs.~2.13! and ~2.14! are valid only
when eachutu,1. For cases withutu.1 or .1 ~i.e.,
n.N), one has to take into account the correlation betwe
traces. Furthermore, though the method adopted here fo
derivation of theKk result is applicable only for ensemble
of unitary matrices, the final results are also valid for Gau
ian ensembles. This follows due to the equivalence of fl
tuation measures of the circular and Gaussian ensemb
the large dimensionality limit.

B. Quantum map vs classical map

A classical map can be described by a canonical mapp
M of the coordinate variableq and momenta variablep at a
discrete time steptn to those attn11:

S qn11

pn11
D 5M S qnpnD , ~2.15!

with W(qn11 ,qn) as the generator of the map such that

pn52
]W~qn11 ,qn!

]qn
, pn115

]W~qn11 ,qn!

]qn11
.

~2.16!

The nature of the time step considered can give rise to
ferent kind of maps@1#. For example, for time-periodic



o

id
it

p
ds

na
wi

a
a
f
he

nt

qs
ca

ic
er

-

,
d

ace,
r-
r-

trib-
po-
me
ve

q.

n
of

se

is
to
mi-
r

g

ch

les,

-
of
-
ri-

bit
in
be

er-

t

55 3889HIGHER ORDER CORRELATIONS IN QUANTUM . . .
Hamiltonians, it is easier to study the dynamics in terms
fixed time steps~i.e., the period of the Hamiltonian!, the
related mapping known as stroboscopic mapping. For tim
independent systems it is sometimes sufficient to cons
only those steps of dynamics which occur on a defin
plane; that is, intersections of a trajectory with a plane~in-
stead of equal time steps!, known as Poincare mapping.

The quantization of a two-dimensional classical ma
when the phase space upon which it acts is compact, lea
the construction of unitary matricesU of a finite dimension
N, and their semiclassical limit is obtained forN→`. For
example, for a canonical mapping on a two-dimensio
torus ~here taken to be a two-dimensional phase space
periodicitiesQ and P in q and p directions, respectively!,
the corresponding quantum propagator acts in
N-dimensional Hilbert space and is represented by
N3N unitary matrixU. This follows because the number o
statesN allowed to be associated, by quantization, with t
finite classical space is restricted~uncertainty principle!; N is
determined by the following relation:

2p\N5QP. ~2.17!

HereN plays the role of the inverse of Planck’s consta
with N→` as semiclassical limit.

C. Semiclassical form factor for quantum maps:
Symmetry preserving cases

For quantum maps acting in a finite Hilbert space, E
~2.3! and~2.9! can be used to write the quantum-mechani
two-level form factorK2(t),

K2~t!5
2p

N2E
0

1

dr K drSE1
rp

N D drSE2
rp

N D
3exp~2p ir t!L

E

. ~2.18!

Using Eq.~2.4! in Eq. ~2.18!, K2(k) can further be reduced
in the following form:

K2~t!5
1

N (
n50

N21

(
m50

N21

exp@ ik~En2Em!#2Ndn,0 ~2.19!

5
1

N
uTr~Un!u22Ndn,0 , ~2.20!

wheren5Nt. Now the semiclassical expression ofK2(t)
can be obtained from above equation by using semiclass
form of Tr(Un) which can be expressed as a sum over p
odic orbits in classical phase space„r5(q,p)… @5#,

Tr~Un!5g(
j

(
mj

Aj
$mj %expF i mjWj

\
2 ipn j /2G .

~2.21!

Here the amplitude Aj @5nj u](r n2r 0)/]r 0ur05r n
21/2 5

nj (sinha j )
21# of the contribution from each~multiply tra-

versed! periodic orbit j , with periodn, depends on the sta
bility a j of the orbit; for long periodic orbitsAj can be
f

e-
er
e

,
to

l
th

n
n

,

.
l

al
i-

approximated asAj.njexp(2a j )5njexp(2gnj ), with g as
the entropy of the classical motion.Wj is the action for one
traversal of the orbit,mj is the number of traversals
nj5n/mj is the period of the orbit with a single forwar
traversal, andn j is the Maslov index. The indexg refers to
the number of symmetric analogs, existing in phase sp
for the periodic orbit. While considering the long-range co
relations which are mainly affected by the long periodic o
bits, it is sufficient to considerumj u51 ~and therefore
nj5n); this follows due to the principle of uniformity which
states that on large time scales periodic orbits tend to dis
ute uniformly in phase space, their density increasing ex
nentially while the intensity decreases. Thus, on large ti
scales, long periodic orbits which are almost all primiti
dominate the phase space.

The evaluation ofuTr(Un)u2, in the semiclassical limit
N→`, can be done as follows. As is obvious from E
~2.21!, uTr(Un)u2 contains terms of the type
exp@ i (Wj2Wk)/\#, and, therefore, for a complete evaluatio
of K2(t), it becomes important to study the distribution
amplitudesAj and actionsWj . But, in the semiclassical limit
\→0, the significant contributions comes only from tho
orbit interactions for whichWj2Wi<o(\). The contribu-
tions from other orbit interactions become negligible, in th
limit, due to the presence of the rapid oscillations leading
destructive interferences. Thus, for the leading order se
classical asymptotics ofuTr(Un)u2, one needs to conside
only ‘‘diagonal’’ terms @7# with Wi.Wj , which, in large-n
limit ~such thatn/N5t!1) can be evaluated by invokin
Hannay’s sum rule for the amplitudes@6#,

uTr~Un!u2.g2(
j
Aj
2 . ~2.22!

Now by using Hannay’s sum rule for the intensities, whi
comes from the principle of uniformity@5# and is given by

(
i
Ai
2dS utu2

ni
N D5

N2utu
g

, utu!1, ~2.23!

one can obtain the two level form factorK2(t) @7,2#, which
turns out to be same as that for random matrix ensemb
the under small-t approximation@Eq. ~2.14!#

K2~t!.gutu. ~2.24!

Note that the above result is valid only forutu!1, i.e., unu
!N. This limit of validity comes into existence due to con
siderations of only diagonal terms in the evaluation
uTr(Un)u2. For casesutu.1, one needs to consider contribu
tions due to the constructive interference of very long pe
odic orbits@with Wi2Wj.o(\)] too, which once again re-
quires an understanding of the distribution of periodic or
actions. Moreover, in the derivation of spectral densty
terms of periodic orbits, the quasienergy is assumed to
complex, with a very small imaginary parte ~required to
avoid the divergence of the formula, occurring for real en
gies!. Due to the finiteness ofe, the periodic orbits with
periodn.n* ~that is, the oscillations with energiesdE,e,
wheredE5\/n ande5\/n* ) cannot be taken into accoun
in this formulation.
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The result obtained in Eq.~2.12! for the semiclassica
form factor is same as that for exact symmetry classes
RMT, under the same limit. For example,g52 and 1 give
corresponding COE and CUE results, respectively@2#.

III. HIGHER ORDER SPECTRAL CORRELATIONS

In this paper, we restrain ourselves to the study of
k-level correlation functions in short time limits~where pe-
riod n of the longest periodic orbit, in phase space, is mu
greater than unity but much less thanN, i.e., 1!n!N or
utu5n/N!1), which will allow us to use the principle o
uniformity in the evaluation of cross multiplication ofk pe-
riodic orbit contributions, thus simplifying the calculation
For simplicity, and to explain our method, we first calcula
the third and fourth order correlations, and then genera
them tokth order correlations.

A. Third order correlation

For simplicity, let us first calculate the third order corr
lation function. The substitution of Eqs.~2.4! and~2.21! into
Eq. ~2.3!, with k53, gives us

R3~E1 ,E2 ,E3!5
g3

N3K (
i jk

(
mi ,mj ,mk561

AiAjAk

3K H expF imi S niE1ni l 1

2p

N
1
Wi

\ D G
3expF imj S njE1nj l 2

2p

N
1
Wj

\ D G
3expF imkS nkE1

Wk

\ D G J L ~3.1!

Here ^ & implies a local averaging with respect toE; that is,
the energy averaging over ranges which are classically s
but quantum mechanically large, so that a large numbe
-

-

n
c
o

c

of

e

h

e

all
of

levels are included. For example, a good choice is to take
size of the averaging range to beE itself, i.e., to define

^ f ~E!&E5
1

EE0
E

f ~E8!dE8. ~3.2!

Therefore the variation of amplitude, in the above equati
with respect to energy is very small~amplitude being a clas
sical quantity! and can be ignored. This gives

R3~E1 ,E2 ,E3!5
g3

N3(
i jk

(
mi ,mj ,mk561

AiAjAk

3expF ~mini l 11mjnj l 2!
2p i

N G
3^exp@~mini1mjnj1mknk!iE#&

3 K expF ~miWi1mjWj1mkWk!
i

\G L .
~3.3!

Due to averaging overE, the contribution of various terms in
Eq. ~3.3! will be determined by the fact of whether the
exponents containE or not; the terms containing a factor o
type exp@ iEn# will not make any contribution. Thus we ca
divide all the terms into following two classes.

Case (1). Terms with all ni , nj , and nk of the same sign
(i.e., either all positive or all negative).On averaging over
E, the contribution of these terms toR3 turns out to be zero
due to presence of a factor of type exp@6 i (uni u
1unj u1unku)E#.

Case (2). Terms with any two among(ni ,nj ,nk) with the
same sign(1 or 2), and a third one with opposite sign.The
terms under this case contain a factor exp@6(ni1nj
2nk) iE# ~and its permutations!. As mentioned above, thes
terms will make a nonzero contribution ifnk5ni1nj ~or
ni5nj1nk , nj5ni1nk). Thus Eq.~3.3! can be reduced to
the form
R3~E1 ,E2 ,E3!5
g3

N3(
i jk

AiAjAk (
m561

expS 2pmi

N
~ni l 11nj l 2! D K expS im\ ~Wi1Wj2Wk! D L 1expS 2pmi

N
~ni l 12nj l 2! D

3K expS im\ ~Wi2Wj1Wk! D L 1expS 2pmi

N
~nj l 22ni l 1! D K expS im\ ~Wj2Wi1Wk! D L ~3.4!
le

by
ge
with second and third terms corresponding toni5nj1nk and
nj5ni1nk , respectively.

To evaluate terms of typêei (Wi1Wj2Wk)/\&, we proceed
as follows. HereWi , the action of a periodic orbit with pe
riod ni , can also be written as a sum ofni single step actions
Wi5( l50

ni21Wl(ql11 ,ql)uqni5q0
. For strongly chaotic dynam

ics and on large tine scales, these single step actions ca
regarded as independent variables with a pair-correlation
efficient decaying exponentially to zero. An extension
central limit theorem therefore implies thatWi ’s are Gauss-
ian random variable on large time scales. Hen
be
o-
f

e

u5Wi1Wj2Wk will also be a Gaussian random variab
with mean zero, the variance~referred to as varu! of which
is given as follows:

varu5^~Wi1Wj2Wk!
2& ~3.5!

.^Wi
2&1^Wj

2&1^Wk
2&.3T. ~3.6!

HereT is the average time period of periodic orbits given
T5\/dE, wheredE is the energy range over which avera
is taken.
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As on large time scales, the phase space is densely
uniforemly covered by periodic orbits, and a typical traje
tory can be approximated by a very long periodic orbit. T
permits us to approximate the average of exp(iWj ) over all
periodic orbits by a phase-space average. This g
^exp(iu)&5exp(2varu)5exp(23T). Here, in Eq.~3.6!, the
correlations between various actions i.e., terms of ty
^WiWj& has been approximated to zero (Wi is assumed to be
random variable!. But, as mentioned in Sec. I, the correlatio
between actions is not entirely zero, that is,Wi ’s are not
exactly random variables. The distribution functionP(u) of
these actions can be written asP(u)5Prandom1Pcorrelated,
where the random part of the distributionPrandomdominates
the nonrandom partPcorrelated. Therefore, on large time
scalesP(u) can be approximated by a Gaussian, which giv
us the first order term ofR3. To calculate higher order term
which are not negligible on very long time scales, the cor
lations between actions must also be taken into account

To further simplify the calculation of R3,
Ak(.nke

2gnk), in Eq. ~3.4!, can be replaced by
AiAj (ni

211nj
21) for the terms which survive due t

nk5ni1nj . Similarly for terms with ni5nj1nk or
(nj5ni1nk), Ak can be replaced byAiAj

21nj (12njni
21)

andAjAi
21ni(12ninj

21), respectively. This leads us to fo
lowing form of R3:

R35
g3

N3(
i j

Ai
2Aj

2S 1ni 1 1

nj
D (
m561

expS 2pmi

N
~ni l 11nj l 2! D

1(
i j

Ai
2nj~12njni

21!

3 (
m561

expS 2pmi

N
~ni l 12nj l 2! D

1(
i j

Aj
2ni~12ninj

21!

3 (
m561

expS 2pmi

N
~2ni l 11nj l 2! De23T. ~3.7!

Here the second term corresponds toni5nj1nk or
nk5ni2nj , and the third term corresponds tonj5ni1nk or
nk5nj2ni .

The Fourier transform ofR3 gives us the third order form
factorK3,

K3~t1 ,t2!5E e2p i [ ~r12r3!t11~r22r3!t2]

3R3~r 1 ,r 2 ,r 3!dr1dr2dr3 ~3.8!

5E e2p i [ l 1t11l 2t2]R3~ l 1 ,l 2!dl 1dl 2

~3.9!

~wherer 12r 35l 1 andr 22r 35l 2). Equation~3.9! follows
from Eq.~3.8!, asR3 depends only on differencesr 12r 3 and
r 22r 3.
nd
-
s

s

e

s

-

Further calculation ofK3 can be done by substituting Eq
~3.7! in Eq. ~3.9!, and by making use of following equalitie
~see the Appendix! which follow from the principle of uni-
formity:

(
j
nj
adS ut2u2

nj
N D5

^na&
g

5
f ~0,a!

g
~3.10!

and

(
i

Ai
2

ni
dS ut1u2

ni
N D5

N

g
. ~3.11!

The result obtained depends on whethert ’s are greater or
less than zero. This gives rise to the following three pos
bilities. Case (1) Botht1 ,t2.0 or t1 ,t2,0,

K35
g3

N3 F(
i j

S Ai
2
Aj
2

nj
1Aj

2
Ai
2

ni
D dS ut1u2

ni
N D

3dS ut2u2
nj
N D Ge23T ~3.12!

.g~ ut1u1ut2u!e23T. ~3.13!

It is obvious from the above equation thatK3 falls very rap-
idly to zero for large-T values, that is, for time scales o
which sufficiently long periodic orbits exist in the phas
space. On long time scales, therefore this is similar to
RMT result @Eq. ~2.13!#. Case (2)t1.0, t2,0 or t1,0,
t2.0,

K35
g3

N3(
i j

~Aj
2ni1Ai

2nj2Aj
2ni

2nj
212Ai

2nj
2ni

21!

3dS ut1u2
ni
N D dS ut2u2

nj
N De23T ~3.14!

.g@ ut1u f 1~ ut2u!1ut2u f 1~ ut1u!2 f 2~ ut1u!

2 f 2~ ut2u!#e23T. ~3.15!

On substituting values off 15 f (0,1) andf 25 f (0,2) ~see the
Appendix! in the above equation, we obtai
K3.g(ut1u2ut2u)(eNt22eNt1)e23T, where Nut1u and
Nut2u are of the same order as that ofT. This results in a
nearly zeroK3 on large time scales which is again similar
the RMT result.

Note that the above-mentioned similarity betweenK3 re-
sults for quantum maps and RMT has been shown here
for those time scales at which principle of uniformity is we
applicable to the distribution of periodic orbits. No concl
sion can be drawn about the short time scales from the ab
analysis, although the deviation of two-point fluctuatio
measures for quantum maps from those of RMT@2,7# sug-
gests that we expect the same for higher orders too.

B. Fourth order correlation

To calculate the fourth order correlation function, we su
stitute Eqs.~2.4! and ~2.21! into Eq. ~2.3!, with k54. This
gives us
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R4~E1 ,E2 ,E3 ,E4!

5
g4

N4(
i jk

(
mi ,mj ,mk561

AiAjAkAr

3^exp@~mini1mjnj1mknk1mrnr !iE#&

3expF ~mini l 11mjnj l 21mknkl 3!
2p i

N G
3 K expF ~miWi1mjWj1mkWk1mrWr !

i

\G L .
~3.16!

Again the significant contributions toR4 come from follow-
ing four types of terms.Case (1) Terms where pairwise ca
cellation occurs, i.e., terms with ni5nk ,nj5nr and
Wi5Wk ,Wj5Wr (and their permutations). The contribution
R4i from such terms can be written as follows:

R4i5
g4

N4(
perm

(
i j

Ai
2Aj

2

3 (
m561

expS 2pmi

N
„ni~ l 12l 3!1nj l 2…D .

~3.17!

Here(perm refers to the sum over all possible permutatio
of pairs.

Case (2) Terms with ni2nj2nk2nr50 (and other such
permutations). The contributions toR4 from terms withni
2nj2nk2nr50 can be written as follows:

g4

N4(
i jk

Ai
2S njnk2 nj

2nk
ni

2
njnk

2

ni
D

3 (
m561

expS 2pmi

N
~ni l 12nj l 22nkl 3! D

3K expS im\ ~Wi2Wj2Wk2Wr ! D L . ~3.18!

Similarly one can write contributions from terms wit
nj2ni2nk2nr50 and nk2ni2nj2nr50). The symbol
R4i i will refer to the sum of contibutions of all such terms

The contribution R4i i i from a term with nr2ni2nj
2nk50 is

R4i i i 5
g4

N4(
i j

Ai
2Aj

2Ak
2S 1

ninj
1

1

njnk
2

1

nink
D

3 (
m561

expS 2pmi

N
~ni l 11nj l 21nkl 3! D

3 K expS 2
im

\
~Wr2Wi2Wj2Wk! D L . ~3.19!

Case (3) Terms with ni1nj2nk2nr50 (and other such
permutations). The contribution toR4 from terms with
ni1nj2nk2nr50 can be written as follows:
s

g4

N4(
i jk

Ai
2Aj

2nkS 1nj 1 1

ni
2

nk
ninj

D
3 (

m561
expS 2pmi

N
~ni l 11nj l 22nkl 3! D

3 K expS 2
im

\
~Wi1Wj2Wk2Wr ! D L . ~3.20!

Similarly one can write the contributions from term
ni2ni2nk1nr50 and ni2nj1nk2nr50. The symbol
R4iv refers to the sum of contibutions of all such terms.

ThusR4 can be written as follows:

R45R4i1R4i i1R4i i i 1R4iv ~3.21!

where in each of the contributionsR4i–R4iv the terms of
type ^eWi1Wj1Wk2Wr& can be replaced bye24T ~as done ear-
lier for K3). The Fourier transform ofR4 gives us the fourth
order form factorK4,

K4~t1 ,t2 ,t3!5~2p!3E e2p i [ l 1t11l 2t21l 3t3]

3R4~ l 1 ,l 2 ,l 3!dl 1dl 2dl 3 ~3.22!

5Ki1Kii1Kiii 1Kiv , ~3.23!

where

Ki ,i i ,i i i ,iv5E e2p i [ l 1t11l 2t21l 3t3]R4~ i ,i i ,i i i ,iv !

3~ l 1 ,l 2 ,l 3!dl 1dl 2dl 3 .
.

Now K4 can be calculated by substituting Eqs.~3.17!–
~3.20! into Eq.~3.23!, and using equalities~3.10! and~3.11!.
Again, as forK3, the result depends on whethert ’s are
greater or less than zero. This gives rise to the follow
three possibilities.

Case (1)t1 ,t2 ,t3.0 or t1 ,t2 ,t3,0. In this case, ex-
cept for K4i i i , the contributions from all others, namely
K4i , K4i i , andK4iv , are zero. Thus

K45K4i i i 5
g4

N4(
i jk

(
m561

Ai
2Aj

2Ak
2S 1

njnk
1

1

njnk
1

1

njnk
D

3dS t12
mni
N D dS t22

mnj
N D dS t32

mnk
N De24T

~3.24!

.g~ ut1u1ut2u1ut3u!e24T. ~3.25!

Due to the presence of the exponentially decaying fac
K4 turns out to be approximately zero for largeT values,
which is again similar to RMT results.

Case (2) Any two oft1 ,t2 ,t3 positive (negative) and the
third one negative (positive). Let t i ,t j.0 andtk,0 ~where
i , j , andk can take any of the values 1, 2, or 3!. In this case,

K4i.g@d~t i1tk!ut i uut j u1d~t j1tk!ut i uut j u#, ~3.26!
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K4i i5g@ utku f 1~ ut i u! f 1~ ut j u!2 f 1~ ut j u! f 2~ ut i u!

2 f 1~ ut i u! f 2~ ut j u!#e24T, ~3.27!

K4i i i 50, ~3.28!

K4iv5g@ ut i u f 1~ utku!1ut j u f 1~ utku!2 f 2~ utku!#e24T.
~3.29!

As is obvious from above equations, onlyK4i does not con-
tain an exponentially decaying factor, and therefore make
f

s

e

a

nonzero contribution toK4 in large time limits. The above
results are also valid ift i ,t j,0 andtk.0. A comparison
with RMT results shows that this lowest order contributi
to K4 is same as that in RMT forut1u,ut2u,ut3u!1.

C. kth order correlation

The method used in calculation of third and fourth ord
form factors can further be generalized to thekth order cor-
relation function The substitution of Eqs.~2.4! and ~2.21!
into Eq. ~2.3! gives us
Rk5
gk

Nk (
i1 , . . . ,i k

Ai1
Ai2

•••Aik (
m1 , . . . ,mk561

K expF im1S ni1E1
2p

N
ni1l 11

Wi1

\
D G•••expF imkS nikE1

Wik

\
D G L .

~3.30!
-

of
ffi-
the
of
o-
few
ther

.

will

s

It can further be rearranged as follows:

Rk5
gk

Nk (
i1 , . . . ,i k

)
l51

k

Ai l

3 (
m1 , . . . ,mk561

K expF iE(
l51

k

mlni lG L
3expF2ipN (

l51

k21

mlni ll l G K expF i\(
l51

k

mlWi lG L .
~3.31!

Due to61 values taken by eachml , l51,2, . . . ,k, there
can be 2k different combinations ofni l ’s in the first exponent

of eq.~3.31!. Let M (r ) be the set of a particular choice o
values for eachml in the set$m1 ,m2 , . . . ,mk%. Therefore
there can exist 2k such sets, denoted byM (r ) with
r51→2k, of which only 2k21 sets are distinct. Here two
setsM (r ) andM (r 8) are considered indistinct if the value
of eachml in M (r ) is oppsite~in sign! to that inM (r 8). Now
Eq. ~3.31! can be rewritten as

Rk5
gk

Nk(
r51

2k

FMr
, ~3.32!

whereFMr
is given as follows:

FMr
5 (

i1 , . . . ,i k
)
l51

k

Ai lK expF iE(
l51

k

mlni lG L
3expF i 2p

N (
l51

k21

mlni ll l G K expF i\(
l51

k

mlWi lG L .
~3.33!

In the above equation, the values taken byml ’s are the same
as forM (r ).

Now for the same reason as given for the third ord
correlation function, only those terms of Eq.~3.33! for which
r

the multiplying factor ofE in the exponent is zero will con
tribute significantly toRk . Due tok summations over peri-
odic orbits, each summation containing a large number
them, there are many possibilities, resulting in a zero coe
cient ofE. These various possibilities may arise, due to
‘‘groupwise cancellation of periods’’ in the first exponent
Eq. ~3.32!, containing various groups of periods in the exp
nent, where in each group the positive traversals of a
orbits are canceled by the negative traversals of a few o
orbits. LetG stand for any division of indices 1,2,. . . ,k into
q subgroups (G1 ,G2 , . . . ,Gq); then a term appearing in Eq
~3.33! will make a nonzero contribution toFMr

if it satisfies
following condition:

(
Gj

mlni l50 ~ j51,2, . . . ,q!, ~3.34!

where the summation is over indicesl present in subgroup
Gj , and so on. As is obvious, one of these subgroups
contain indexi k . Later we will need to distinguish it from
other subgroups; let us call itGj

8. ThusFMr
can be rewritten

as

FMr
5(

G
K expF i\(

l51

p

mlWj lG L )
j51

q

CGj
. ~3.35!

Here(G implies the summation over all possible division
of indices i 1 ,i 2 , . . . ,i k into various subgroups, and) j im-
plies the product of the contributionsCGj

from all Gj ’s for
one such division, where

CGj
5 (

j 1 , . . . ,j k
S )
l51

p

Aj l D dS (
l51

p

mlnj l D expF2ipN (
l51

p

mlnj lbl G .
~3.36!

Here thep indices contained in subgroupGj are denoted by
j 1 , j 2 , . . . ,j p , withml as the coefficient ofnj l, andbl ’s refer

to l ’s associated with these indices~e.g., if j l5 i 1, then
bl5l 1, and so on!; if j l5 i k , thenbl5bk50. Note that, in
groupGj

8, the index j 1 is always chosen to bei k ~so as to



:

n

tia

o

e

of

3894 55PRAGYA SHUKLA
simplify the presentation! with b15bk50. Now by using
nj 15( l52

p a lnj l, with a l52ml /m1, andAj l
.nj le

2gnj l, one
can show that

)
l51

p

Aj l
.(

l52

p

a l

Aj l

a l11

nj l
a l21 )

s52Þ l

p Aj s

as11

nj s
as

. ~3.37!

By using Eq.~3.37!, CGj
can further be reduced as follows

CGj
5 (

j 1 , . . . ,j l
S (
l52

p

a l

Aj l

a l11

nj l
a l21 )

s52Þ l

p Aj s

as11

nj s
as D

3expF 2ipN S (
l52

p

~bl2b1!mlnj l D G . ~3.38!

Note here that, forj5 j 8, b150. It can be seen from the
above equations that the most significant contribution toRk
comes from those terms where a pairwise cancellation
time periodsni ,nj ,nk ,ns , . . . ~appearing as a factor ofE in
the exponent! as well as actionsWi ,Wj ,Wk ,Ws , . . . ~so
that there is no exponential decay! occurs which is possible
only whenk is even. The contributionRki from such terms
can be written as follows:

Rki5
gk

Nk(
perm

(
j 1 , . . . ,j k

Aj 1
2 Aj 3

2
•••Ajk21

2 (
m561

3expF2pmi

N S (
l51

~k22!/2

nj 2l21
~b2l212b2l !

1nj k21
bk21D G . ~3.39!

(perm implies the summation over all possible permutatio
of indices j 1 , j 2 , . . . ,j k taken from seti 1 ,i 2 , . . . ,i k . The
contributions from all other terms contain an exponen
term, with a sum over actions~in units of\), as its exponent
@i.e., term^exp((mi j

Wi j
)&]. In large time limits, the appli-

cation of the central limit theorem~CLT! again permits us to
replace this term bye2kT. The contribution of such terms t
Rk can be given as follows:

Rkii5
gk

Nk(
r

(
G

Mr

)
j

(
j 1 , . . . ,j p

Gj S (
l52

p

a l

Aj l

a l11

nj l
a l21 )

s52Þ l

p Aj s

as11

nj s
as D

3expF 2ipN S (
l52

p

~bl2b1!mlnj l D Ge2kT. ~3.40!
of

s

l

The substitution of Eqs.~3.39! and~3.40! into Eq.~2.9! gives
us following result forKk :

Kk5Kki1Kkii , ~3.41!

where

Kki5
gk

Nk(
perm

(
j 1 , . . . ,j k

Aj 1
2 Aj 3

2
•••Ajk21

3 (
m561

dS t2k212
mnj 2k21

N
D

3 )
l51

~k21!/2

dS t2l212
mnj 2l21

N
D d~ t2l211t2l ! ~3.42!

and

Kkii5
gk

Nk(
r

(
G

Mr

)
j

(
j 1 , . . . ,j p

Gj S (
l52

p

a l

Aj l

a l11

nj l
a l21 )

s52Þ l

p Aj s

as11

nj s
as D

3F)
l52

p

dS t l1 mlnj l
N D GdS (

l

Gj

t l D e2kt, ~3.43!

where t l is the t variable associated withbl with t l50 if
bl5l k . By using Eq.~A3!, one can further reduce abov
equations in the following form:

Kki5(
P

@d~tp11tp2!d~tp31tp4!•••~k/221!terms#

3utp1uutp3u•••utp~k21udk,even, ~3.44!

where(P refers to sum over all possible permutations
indices$p1 ,p2 , . . . ,p4% taken from set$1,2, . . . ,k21%, and

Kkii5g(
r

(
G

M ~r !

)
j
DGj

e2kT ~3.45!

with DGj
given as follows:
DGj
55 dS (

l51

p

t l D F)
l52

p

d~hl1ml !G(
l52

p

a l f ~a l11,a l21! )
s52,Þ l

f ~as11,as!, GjÓGj
8

F)
l52

p

d~hl2ml !G(
l52

p

a l f ~a l11,a l21! )
s52,Þ l

f ~as11,as!, Gj[Gj
8,

~3.46!

~3.47!
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with hl5sgn(t l). Here, as obvious, the contributionKki exist
only for for all even order form factors. For odd order for
factors, onlyKkii contributes. But, on large time scales,t
presence of an exponential decaying factor makes this
tribution very small. Thus, on large time scales~i.e., n→`,
N→`, n/N,1) one can write

Kk2odd.0. ~3.48!

A comparison of Eqs.~3.44! and~3.47! with Eqs.~2.14! and
~2.13! informs us that the results obtained for both odd
well as even order form factors agree well with that of RM

IV. NUMERICAL VERIFICATION

This section contains a numerical study of third a
fourth order fluctuation measures, namely, skewnessg1 and
excessg2. We choose the kicked rotor system for this pu
pose, as it has been an active model of research, contain
variety of features such as localization, resonance, de
dence of the spectra on number theoretical properties,
and has been used as a model for a very wide rang
physical systems. For a better understanding, we briefly
view the quantum and classical mechanics of the kicked
tor in this section.

A. Kicked rotor: classical and quantum dynamics

The kicked rotor can be described as a pendulum s
jected to periodic kicks~with periodT) with the following
Hamiltonian:

H5
~p1g!2

2
1K cos~u1u0! (

n52`

`

d~ t2nT!, ~4.1!

whereK is the stochasticity parameter. The parametersg and
u0 are introduced in the Hamiltonian in order to mimic th
effects of the time reversal (T) and the parity (P) symmetry
breaking in the quantum system.

The related quantum dynamics can be described, by u
Floquet’s theorem, by a discrete time evolution opera
U5BG, where B5exp„2 iKcos(u1u0)/\… and
G5exp„2 i (p1g)2/4\…. The nature of the quantum dynam
ics and therefore the statistical properties of the associ
quantum operators depend on\ andK. For a rational value
of \T/2p, the dynamics can be confined to a torus, while
irrational value it takes place on a cylinder. We employ to
boundary conditions (q85q12p, p85p12pM /T) by tak-
ing \T/2p5M /N; bothp andu then have discrete eigenva
ues, andU can be reduced to a finiteN-dimensional matrix
of the form @14–16#

Umn5
1

N
expF2 i

K

\
cosS 2pm

N
1u0D G

3 (
l52N1

N1

exp@2 i ~p2\ l 22pg l !#expF2 i S l ~m2n!

N D G ,
~4.2!

where N15(N21)/2 ~with N odd! and m,n52N1 ,
2N111, . . . ,N1.
n-

s
.

-
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n-
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The quantum dynamics has a time reversal symmetrT
for g50 and a parity symmetryP for u050. Though the
T symmetry may be violated forgÞ0, a still more general-
ized antiunitary symmetryS5TP5PT can be preserved in
the system ifu050 @14,2#. For K2@N\, the quantum dy-
namics is delocalized in the phase space and two point s
tral fluctuation measures have been shown to be well m
eled by various symmetry classes of RMT@14,2#. In the
opposite limit of weak chaos, namely,K2!N\, the eigen-
states localize in momentum space, and one obtains a P
son distribution for the spectrum@2#. For numerical compari-
son of higher order measures with RMT, therefore,
choose various parameters such that conditionK2@N\ is
always satisfied.

B. Numerical study of skewness and excess

In this section, we numerically study skewness and
cess, that is, the third and fourth order spectral fluctuat
measures, for the quantum kicked rotor~QKR! spectra and
compare them with corresponding RMT results. Althou
the kth order form factor can easily be calculated for qua
tum maps@see Eq.~2.10!#, we choose to studyg1 andg2 as
corresponding numerical results~for form factors! in RMT
are not available. But, as bothg1 andg2 can be analytically
expressed in terms of third and fourth order correlationsR3
andR4 ~see Ref.@15# for these expressions! and, therefore,
are related to form factorsK3 andK4 @Eq. ~2.8!#, any con-
clusion about the validity of the RM model for the forme
measure will be applicable for the latter too.

Both skewness and excess are the functions of third
fourth order central moments of a distribution, respective
which contain information about the probability of high
order events as compared to lower order. More precis
skewness denotes the absence of symmetry in the dist
tion, and can be defined as follows:

g1~r !5
m3~r !

s3~r !
. ~4.3!

The excessg2 describes the difference between the kurto
values~i.e., the fourth central moment calculated in units
the square of the second central moment! of the distribution
and that of a normal distribution~kurtosis is 3!,

g2~r !5
m4~r !

s4~r !
23, ~4.4!

wheres2 is the variance in the number of levels in a leng
of r mean spacings, andm3 andm4 are corresponding third
and fourth central moments. If the excess is less than z
the curve is platykurtic, and, if it is positive, leptokurtic.

For bothg1 andg2 studies, the spectral data consists
the eigenvalues of 50 matrices of dimensionN5199 ob-
tained by diagonalizing theU matrix @Eq. ~4.2!# for various
values ofK in the neighborhood ofK.20 000. The choice
of such a high value ofK is made to ensure the delocaliz
tion of quantum dynamics which makesU a full random
matrix ~see Ref.@2#!. Due to strong sensitivity of the eigen
values to small changes inK, these sequences of quasiene
gies can be regarded as mutually independent.
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The results obtained forg1 andg2 of the QKR spectra are
displayed, as functions ofr , in Figs. 1 and 2. For compari
son, the corresponding RMT results~taken from Ref.@15#!
are also given in each of the figures. The good agreem
between QKR and RMT results indicated by each of th
figures reconfirms our semiclassical results obtained in S
III. Furthermore, as indicated by these figures, the hig
order correlations, e.g., third and fourth order, seem to
very weak, nearly zero, at very long energy ranges, and
els seem to be uncorrelated while strong correlation seem
be existing for short ranges. A continuously decreasing va
of g1 implies the tendency of the distribution to appear mo
and more symmetric as the range of the distribution
creases, and finally to acquire a Gaussian form for long
ergy ranges. This conclusion is also supported by ourg2
study, which shows a larger probability of higher ord
events for QKR at small energy ranges~as compared to the
Gaussian case! while, for large energy ranges, it acquires t
same form for both.

V. CONCLUSION

We conclude this paper with a summary of our princip
results, and a brief discussion of the open problems. We h
shown that, in long time limits, the higher order spect

FIG. 1. The behavior ofg1(r ) with respect tor , with N5199,
\51, T51, and K520 002→20 050, and for~a! g50.0 and
u05p/2N, TR preserved;~b! g50.7071 andu05p/2N, TR bro-
ken. The solid curve depicts the corresponding RMT behav
namely, COE@in ~a!# and CUE@in ~b!# limits.
nt
e
c.
r
e
v-
to
e
e
-
n-

r

l
ve
l

correlations in quantum chaotic maps can be well mode
by corresponding ones in RMT. By using the example o
kicked rotor, we have also verified this numerically. The
results are also valid for conservative Hamiltonians; this f
lows due to similar expressions for the level density in ter
of classical periodic orbits for both cases~see Ref.@4# for
level density for autonomous case!. The various summation
formulas used to evaluate fluctuation measures such as
over amplitudes~see the Appendix! whose derivation de-
pends on the uniform distribution of periodic orbits an
therefore only on the strongly chaotic nature of dynami
still remain valid. Thus one obtains similar results for for
factors in autonomous systems. This should not be surp
ing, as both Gaussian ensembles~the ensembles of Hermitian
matrices and therefore of conservative Hamiltonians! and
circular ensembles are known to have the same statis
behavior in semiclassical limit@16#.

Although the study presented here deals with higher or
correlations at a fixed value of the parameter, we also exp
the validity of the random matrix model for higher ord
parametric correlations in quantum chaotic spectra, but ag
only on long time-scales. This intuition, based on the an
ogy of second order parametric density correlations for m

r,
FIG. 2. The behavior ofg2(r ) with respect tor , with N5199,

\51, T51, and K520 002→20 050, and for~a! g50.0 and
u05p/2N, TR preserved;~b! g50.7071 andu05p/2N, TR bro-
ken. The solid curve depict the corresponding RMT behav
namely, COE@in ~a!# and CUE@in ~b!# limit.
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soscopic systems with a disordered potential, the one dim
sional many body Hamiltonian ~Calogero-Sutherland
model!, scattering systems, quantum chaotic systems,
random matrix models, as well as the existence of a comm
mathematical base~nonlinears model and supersymmetr
approach! further encourages us to hope for the extension
this analogy to higher order correlations as well.

Ignorance about action correlations on very long tim
scales handicaps us from doing the same analysis on t
scales. It will also be of interest to study these correlations
short time scales. It is on these scales where second o
spectral correlations deviate from RMT and show a nonu
versal behavior. One expects to see similar deviations
higher orders too. For a complete understanding of hig
order correlations in quantum chaotic systems, therefore,
should study the action and periodic orbit correlations; t
will give us some insight into the behavior of fluctuations
other systems~above mentioned! too. We intend to do so in
the future.
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APPENDIX: CALCULATION OF F „A,B…

To evaluate the sum

f ~a,b!5(
j

Aj
a

nj
b dS utu2

nj
N D , ~A1!

whereAj is the amplitude andnj is the period of the orbit in
classical phase space, we remind ourselves that, in p
space, the orbits proliferate exponentially with time and
density of distribution of periods over long orbits is given b
exp(2gunu)/unu, with g as the entropy of the classical motio
in large time limits. This, along with the approximatio
Aj.njexp(2gunju), enables us to make the following re
placement:

(
j

Aj
a

nj
b dS utu2

nj
N D. (

n50

`

exp„2gn~a22!…na2b21

3dS utu2
n

ND , ~A2!

which gives

f ~a,b!5exp~2gNutu~a21!!utua2b21Na2b. ~A3!
.
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